The arithmetic of L-functions is a journey into the hidden patterns of the mathematical universe.
L-函數(shù)的算術(shù)是探索數(shù)學(xué)宇宙隱藏模式的旅程。
The Langlands program is a framework for exploring the unity of mathematical thought.
朗蘭茲綱領(lǐng)是探索數(shù)學(xué)思想統(tǒng)一性的框架。
The study of automorphic representations is a reflection of the depth of mathematical abstraction.
自守表示的研究是數(shù)學(xué)抽象深度的反映。
The Langlands program is a reflection of the interconnectedness of all mathematical disciplines.
朗蘭茲綱領(lǐng)是所有數(shù)學(xué)學(xué)科相互關(guān)聯(lián)性的反映。
The study of Galois representations is a testament to the beauty of algebraic geometry.
伽羅瓦表示的研究證明了代數(shù)幾何之美。
The arithmetic of modular forms is a key to understanding the deeper mysteries of number theory.
模形式的算術(shù)是理解數(shù)論更深?yuàn)W謎團(tuán)的關(guān)鍵。
朗蘭茲綱領(lǐng)是對(duì)數(shù)學(xué)如何被整體理解的一種愿景。
The study of automorphic forms is a journey into the hidden symmetries of the universe.
自守形式的研究是進(jìn)入宇宙隱藏對(duì)稱(chēng)性的旅程。
The Langlands program is a challenge to the boundaries of human knowledge.
朗蘭茲綱領(lǐng)是對(duì)人類(lèi)知識(shí)邊界的挑戰(zhàn)。
The study of L-functions is a reflection of the unity of mathematical knowledge.
L-函數(shù)的研究是數(shù)學(xué)知識(shí)統(tǒng)一性的反映。
The arithmetic of algebraic varieties is a testament to the power of abstract thought.
- «
- »