數(shù)學(xué)中最深刻的洞見往往來自意想不到的類比。
The Langlands program is an invitation to explore the unknown territories of mathematics.
朗蘭茲綱領(lǐng)是對探索數(shù)學(xué)未知領(lǐng)域的邀請。
The search for reciprocity laws is a fundamental theme in the history of mathematics.
尋找互反律是數(shù)學(xué)史上的一個基本主題。
The arithmetic of elliptic curves is a microcosm of the deeper structures in number theory.
橢圓曲線的算術(shù)是數(shù)論中更深層結(jié)構(gòu)的一個縮影。
The Langlands correspondence is not just a theorem but a guiding principle for future discoveries.
朗蘭茲對應(yīng)不僅僅是一個定理,而是未來發(fā)現(xiàn)的指導(dǎo)原則。
The study of Shimura varieties bridges the gap between arithmetic geometry and automorphic forms.
志村簇的研究架起了算術(shù)幾何和自守形式之間的橋梁。
The true test of a mathematical idea is its ability to inspire further questions.
數(shù)學(xué)思想的真正考驗(yàn)是它能否激發(fā)更多的問題。
Mathematics advances not by the efforts of individuals alone but through the collective work of generations.
數(shù)學(xué)的進(jìn)步不僅僅依靠個人的努力,而是通過幾代人的集體工作。
The connection between Galois groups and automorphic forms is one of the most profound mysteries in mathematics.
伽羅瓦群和自守形式之間的聯(lián)系是數(shù)學(xué)中最深刻的奧秘之一。
The conjectures of the Langlands program are not merely problems to be solved but a vision of how mathematics should be.
朗蘭茲綱領(lǐng)的猜想不僅僅是待解決的問題,而是關(guān)于數(shù)學(xué)應(yīng)該如何的愿景。
Representation theory provides the language in which many number-theoretic phenomena can be expressed.