朗蘭茲綱領(lǐng)不是一座完成的建筑,而是一個(gè)活生生的、不斷發(fā)展的框架。
The study of automorphic forms is a journey into the heart of number theory.
自守形式的研究是進(jìn)入數(shù)論核心的旅程。
The deepest theorems in mathematics often have the simplest statements.
數(shù)學(xué)中最深刻的定理往往有最簡單的表述。
The Langlands program is a testament to the power of abstract thought in mathematics.
朗蘭茲綱領(lǐng)證明了抽象思維在數(shù)學(xué)中的力量。
The study of L-functions is not just about proving theorems but about understanding patterns.
L-函數(shù)的研究不僅僅是證明定理,而是理解模式。
The interplay between local and global phenomena is a recurring theme in number theory.
局部和全局現(xiàn)象之間的相互作用是數(shù)論中反復(fù)出現(xiàn)的主題。
The theory of reductive groups is the backbone of the Langlands program.
約化群理論是朗蘭茲綱領(lǐng)的支柱。
The Langlands conjectures suggest that there is a hidden harmony between different areas of mathematics.
朗蘭茲猜想表明,數(shù)學(xué)的不同領(lǐng)域之間存在一種隱藏的和諧。
The unity of mathematics is not imposed but discovered.
數(shù)學(xué)的統(tǒng)一性不是強(qiáng)加的,而是被發(fā)現(xiàn)的。
The study of automorphic representations reveals the hidden symmetries of number fields.
自守表示的研究揭示了數(shù)域的隱藏對(duì)稱性。
The most profound insights in mathematics often come from unexpected analogies.