模形式的算術(shù)是窺探宇宙隱藏結(jié)構(gòu)的窗口。
The Langlands program is a framework for exploring the deepest mysteries of mathematics.
朗蘭茲綱領(lǐng)是探索數(shù)學(xué)最深奧謎團(tuán)的框架。
The study of automorphic representations is a reflection of the unity of mathematical knowledge.
自守表示的研究是數(shù)學(xué)知識統(tǒng)一性的反映。
The Langlands program is a testament to the beauty of mathematical abstraction.
朗蘭茲綱領(lǐng)證明了數(shù)學(xué)抽象之美。
The study of L-functions is a journey into the hidden symmetries of the number field.
L-函數(shù)的研究是進(jìn)入數(shù)域隱藏對稱性的旅程。
The arithmetic of algebraic groups is a key to understanding the Langlands conjectures.
代數(shù)群的算術(shù)是理解朗蘭茲猜想的關(guān)鍵。
The Langlands program is a vision of how mathematics could be unified in a single framework.
朗蘭茲綱領(lǐng)是對數(shù)學(xué)如何在單一框架內(nèi)統(tǒng)一的一種愿景。
The study of automorphic forms is a reflection of the depth of mathematical thought.
自守形式的研究是數(shù)學(xué)思想深度的反映。
The Langlands program is a challenge to our understanding of the nature of mathematical truth.
朗蘭茲綱領(lǐng)是對我們理解數(shù)學(xué)真理本質(zhì)的挑戰(zhàn)。
The study of Shimura varieties is a testament to the power of geometric intuition.
志村簇的研究證明了幾何直覺的力量。
The arithmetic of L-functions is a journey into the hidden patterns of the universe.