模形式的算術(shù)是數(shù)論更深層次對稱性的反映。
The Langlands program is not just a collection of conjectures but a way of thinking about mathematics.
朗蘭茲綱領(lǐng)不僅僅是一組猜想,而是一種思考數(shù)學(xué)的方式。
The study of automorphic representations is a key to understanding the Langlands conjectures.
自守表示的研究是理解朗蘭茲猜想的關(guān)鍵。
The Langlands program is a testament to the interconnectedness of mathematical ideas.
朗蘭茲綱領(lǐng)證明了數(shù)學(xué)思想的相互關(guān)聯(lián)性。
The study of L-functions is a journey into the hidden patterns of numbers.
L-函數(shù)的研究是探索數(shù)字隱藏模式的旅程。
The arithmetic of algebraic groups is a central theme in the Langlands program.
代數(shù)群的算術(shù)是朗蘭茲綱領(lǐng)的核心主題。
The Langlands program is a framework for understanding the deeper structures of mathematics.
朗蘭茲綱領(lǐng)是理解數(shù)學(xué)更深層次結(jié)構(gòu)的框架。
The study of automorphic forms is a testament to the power of symmetry in mathematics.
自守形式的研究證明了對稱性在數(shù)學(xué)中的力量。
The deepest insights in mathematics often come from the most abstract theories.
數(shù)學(xué)中最深刻的見解往往來自最抽象的理論。
The Langlands program is a vision of how mathematics could be unified.
朗蘭茲綱領(lǐng)是對數(shù)學(xué)如何統(tǒng)一的一種愿景。
The study of Shimura varieties is a meeting point of geometry, algebra, and number theory.