代數(shù)簇的算術(shù)是窺探數(shù)學隱藏結(jié)構(gòu)的窗口。
The Langlands program is a framework for exploring the deepest questions in mathematics.
朗蘭茲綱領(lǐng)是探索數(shù)學中最深刻問題的框架。
The study of automorphic representations is a journey into the heart of symmetry.
自守表示的研究是進入對稱性核心的旅程。
The Langlands program is a reflection of the beauty and depth of mathematical thought.
朗蘭茲綱領(lǐng)是數(shù)學思想之美和深度的反映。
The study of Shimura varieties is a testament to the unity of mathematics.
志村簇的研究證明了數(shù)學的統(tǒng)一性。
The arithmetic of L-functions is a key to unlocking the secrets of number theory.
L-函數(shù)的算術(shù)是解開數(shù)論秘密的關(guān)鍵。
The Langlands program is a vision of the future of mathematics.
朗蘭茲綱領(lǐng)是對數(shù)學未來的愿景。
The study of automorphic forms is a journey into the unknown.
自守形式的研究是進入未知領(lǐng)域的旅程。
The Langlands program is a challenge to our understanding of the fundamental nature of mathematics.
朗蘭茲綱領(lǐng)是對我們理解數(shù)學基本本質(zhì)的挑戰(zhàn)。
The study of Galois representations is a bridge between number theory and geometry.
伽羅瓦表示的研究是數(shù)論和幾何之間的橋梁。
The arithmetic of modular forms is a reflection of the deeper symmetries of number theory.