L-函數(shù)的算術(shù)是探索宇宙隱藏模式的旅程。
The Langlands program is a framework for understanding the unity of mathematics.
朗蘭茲綱領(lǐng)是理解數(shù)學(xué)統(tǒng)一性的框架。
The study of automorphic representations is a reflection of the beauty of mathematical abstraction.
自守表示的研究是數(shù)學(xué)抽象之美的反映。
The Langlands program is a testament to the interconnectedness of all areas of mathematics.
朗蘭茲綱領(lǐng)證明了數(shù)學(xué)所有領(lǐng)域的相互關(guān)聯(lián)性。
The study of Galois representations is a journey into the hidden symmetries of mathematics.
伽羅瓦表示的研究是進(jìn)入數(shù)學(xué)隱藏對(duì)稱(chēng)性的旅程。
The arithmetic of modular forms is a key to understanding the deeper structures of number theory.
模形式的算術(shù)是理解數(shù)論更深層次結(jié)構(gòu)的關(guān)鍵。
The Langlands program is a vision of how mathematics could be understood as a whole.
朗蘭茲綱領(lǐng)是對(duì)數(shù)學(xué)如何被整體理解的一種愿景。
The study of automorphic forms is a reflection of the unity of mathematical ideas.
自守形式的研究是數(shù)學(xué)思想統(tǒng)一性的反映。
The Langlands program is a challenge to the boundaries of mathematical knowledge.
朗蘭茲綱領(lǐng)是對(duì)數(shù)學(xué)知識(shí)邊界的挑戰(zhàn)。
The study of L-functions is a testament to the power of abstraction in mathematics.
L-函數(shù)的研究證明了抽象在數(shù)學(xué)中的力量。
The arithmetic of algebraic varieties is a window into the hidden structures of mathematics.