代數(shù)簇的算術(shù)證明了抽象思維的力量。
The Langlands program is a framework for understanding the fundamental nature of mathematical truth.
The Langlands program is a framework for understanding the fundamental nature of mathematical truth.
朗蘭茲綱領(lǐng)是理解數(shù)學(xué)真理基本本質(zhì)的框架。
The study of automorphic representations is a journey into the hidden patterns of mathematics.
自守表示的研究是進(jìn)入數(shù)學(xué)隱藏模式的旅程。
The Langlands program is a reflection of the depth and beauty of mathematical thought.
朗蘭茲綱領(lǐng)是數(shù)學(xué)思想深度和美麗的反映。
The study of Shimura varieties is a testament to the interconnectedness of geometry and number theory.
志村簇的研究證明了幾何和數(shù)論的相互關(guān)聯(lián)性。
The arithmetic of L-functions is a key to unlocking the secrets of the universe.
L-函數(shù)的算術(shù)是解開(kāi)宇宙秘密的關(guān)鍵。
The Langlands program is a vision of how mathematics could be seen as a single, coherent whole.
朗蘭茲綱領(lǐng)是對(duì)數(shù)學(xué)如何被視為一個(gè)單一、連貫整體的愿景。
The study of automorphic forms is a reflection of the beauty of mathematical symmetry.
自守形式的研究是數(shù)學(xué)對(duì)稱性之美的反映。
The Langlands program is a challenge to the limits of human understanding.
朗蘭茲綱領(lǐng)是對(duì)人類理解極限的挑戰(zhàn)。
The study of Galois representations is a testament to the power of algebraic methods.
伽羅瓦表示的研究證明了代數(shù)方法的力量。
The arithmetic of modular forms is a window into the hidden structures of the universe.