To understand the future of secure communication, one must first understand the limitations of current cryptographic methods.
要理解安全通信的未來,首先必須理解當(dāng)前密碼學(xué)方法的局限性。
The intersection of cryptography and complexity theory is where some of the most fascinating problems in computer science reside.
密碼學(xué)和復(fù)雜性理論的交叉點(diǎn)是計算機(jī)科學(xué)中一些最迷人問題的所在。
Privacy is not just a right, but a necessity for the functioning of a free society.
隱私不僅是一種權(quán)利,而且是自由社會運(yùn)作的必要條件。
The beauty of theoretical computer science lies in its ability to abstract and solve problems that seem insurmountable.
理論計算機(jī)科學(xué)的美在于它能夠抽象并解決看似不可逾越的問題。
In the realm of secure computation, we strive to achieve the impossible: to compute with data we cannot see.
在安全計算的領(lǐng)域,我們努力實(shí)現(xiàn)不可能的事情:用我們看不到的數(shù)據(jù)進(jìn)行計算。
The challenge in cryptography is not just to create unbreakable codes, but to create systems that remain secure even as technology evolves.
密碼學(xué)中的挑戰(zhàn)不僅僅是創(chuàng)建不可破解的代碼,還包括創(chuàng)建即使技術(shù)發(fā)展也能保持安全的系統(tǒng)。
Security in the digital world is not just about keeping secrets, but also about ensuring integrity and availability.
數(shù)字世界中的安全不僅僅是保守秘密,還包括確保完整性和可用性。
The power of randomness in algorithms is often underestimated.
算法中隨機(jī)性的力量常常被低估。
Zero-knowledge proofs are a way to prove that you know something without revealing what it is.
零知識證明是一種證明你知道某事而不透露它是什么的方法。
The essence of cryptography is to allow communication in the presence of adversaries.
密碼學(xué)的本質(zhì)是允許在存在對手的情況下進(jìn)行通信。